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1 Introduction

Computational modeling has become a very effective approach in predicting properties of materials,
and in designing functional materials with targeted structural, thermal, or optical properties. Many
electronic structure methods have been developed, including density functional theory (DFT) (see
[1] and the references therein), many DFT-based methods [2, 3], quantum Monte Carlo [4], and
quantum chemistry methods [5]. Among them, DFT has been widely used in physics and materials
science because it is computationally cheaper than other methods but still gives desired accuracy.
It also provides a good starting point for higher levels of theory, such as many-body perturbation
theory and quantum Monte Carlo.

In parallel to these electronic structure method developments, a dramatic increase in computing
capabilities over the last decade has enabled large-scale electronic structure calculations to address
leading-edge materials science problems. In particular, with Theta at the Argonne Leadership
Computing Facility (ALCF), our early science project investigated large-scale nanostructured ma-
terials for energy conversion and storage using two open-source electronic structure codes Qbox
(http://qboxcode.org) and WEST (http://west-code.org). Qbox is an ab-initio molecular dynamics
code based on plane wave DFT, and WEST is a post-DFT code for excited state calculations within
many-body perturbation theory.

Theta is a Cray/Intel system based on 2nd generation Xeon-Phi processors (code-named Knights
Landing (KNL)) and serves as a bridge between the current flagship machine, Mira, a 10 petaflop
IBM Blue Gene Q, and the upcoming ALCF-3 Aurora flagship machine. Theta has several distinct
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architectural features, such as Advanced Vector Extensions (AVX-512) and a memory hierarchy,
which are expected to enable scientific codes to achieve higher performance. Other key differences
between Theta and Mira are the networks (IBM’s 5D torus vs. Cray Aries interconnect with
3-level Dragonfly topology) and the overall balance of compute/memory capabilities relative to
network performance. It is crucial to understand the combined impact of these technologies on
an application’s performance (with production quality inputs) in order to scale efficiently to large
fractions of the machine and improve the time-to-solution of science-critical calculations. In this
report, we summarize our efforts to improve performance of both Qbox and WEST on Theta,
some of which have also resulted in improved performance on Mira. We expect the optimizations
accomplished during the Theta Early Science project will play a key role in refining the road-map
for software development efforts targeting future large-scale computing resources (e.g. Aurora at
ALCF).

The contents of this report are organized as follows. In Section 2, we give a brief summary of the
science objectives explored in this early science project. In Section 3, we introduce the Qbox and
WEST application codes and briefly discuss the underlying theories and algorithms – plane wave
DFT and many-body perturbation theory. Then, in Section 4, the optimization efforts completed
for both codes are discussed. Finally, in Section 5, we comment on the portability of the two codes,
in particular highlighting the possibility for workflows to utilize both Mira and Theta as enabled
by this project.

2 Science Summary

In this project, the electronic properties of several nanostructured materials were investigated for
their use in solar and thermal energy conversion devices. In particular, we focused on the opto-
electronic properties of inorganic nanostructured samples for use in third generation solar cells, i.e.
solar cells exploiting intermediate band transitions and/or multi-exciton generation for carrier mul-
tiplication. The goal is to use advanced theoretical methods to improve predictions of the properties
of new energy materials thereby accelerating discovery of materials for use in future devices and
helping to optimize device performance.

We focus on materials exhibiting complex structures on multiple length scales and predict their
electronic and thermal properties using a theoretical framework that combines ab initio molecular
dynamics with accurate electronic structure methods. The molecular simulations are employed to
compute ensemble averages of thermodynamic and transport properties of nanostructured materials
with complex morphologies and compositions, inclusive of interfaces between nano- and meso-scale
building blocks (see Fig. 1). The same atomistic trajectories subsequently serve as input to many-
body perturbation theory calculations to compute electronic properties, including band gaps, band
edges, absorption spectra, and dielectric properties.

We collaborate with experimental groups (V. Klimov at LANL and D. Talapin at UoC) to determine
initial structure models to be used as input for ab initio molecular dynamics simulations for further
structural optimization, and subsequently many-body perturbation calculations to determine accu-
rately the optoelectronic properties. We focus on group IV and III-V nanoparticles with a variety
of ligands, which are currently being tested experimentally. In addition, we compute band gaps and
energy level alignment between ligands and constituent nanoparticles (NPs), or between the two
constituents in a heterogeneous interface system, so as to optimize both quantities to increase the
system hole and electron mobilities. Together, these important microscopic pieces of information
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Figure 1: Examples of systems investigated in this project using the Qbox and WEST codes on
Theta: (a) Silicon nanoparticle; (b) CdSe nanoparticle; (c) PbSe nanoparticle; (d) Pb nanoparticle
imbedded in a CdSe ligand; (e) Silicon/water interface.

combine to provide guidance on the design of materials for high-efficiency solar cells.

3 Codes, Methods, and Algorithms

3.1 Qbox – plane wave density functional theory

Qbox is an ab initio molecular dynamics code based on the DFT with plane waves and pseudopo-
tentials formalism. In DFT, the electronic properties of a system are described by the following
self-consistent Kohn-Sham equation [1],

ĥKSψi =

[
− 1

2
∇2 + Vext(r) +

∫
dr′

ρ(r′)

|r− r′|
+ Vxc[ρ(r)]

]
ψi(r) = εiψi(r), i = 1, · · ·N . (1)

Here, ρ(r) is the density of electrons in the system, ψi(r) is a single particle orbital, and εi is
the Kohn-Sham energy associated with ψi(r). The first and second terms are, respectively, the
kinetic energy and the potential energy including the Coulomb interaction from ions. The third
and forth terms represent electron-electron interactions via the Hartree and exchange correlation
Vxc potentials, respectively.

The exchange-correlation potential Vxc is a functional of the electron density ρ(r), the exact form
of which is unknown. Different approximate forms have been introduced in the literature [1]: the
local density approximation (LDA) [6], local spin density approximation (LSDA), various forms of
generalized gradient approximation (GGA) [7, 8, 9], meta-GGA [10], and many flavors of hybrid
functionals, such as PBE0 [11] and HSE [12] that include exact Hartree-Fock exchange. Unfor-
tunately, there is no known systematic way to achieve an arbitrarily high level of accuracy and

3



different functionals might be suitable to specific classes of systems. It has been shown that hybrid
functionals are good for systems involving transition metal elements, however, these functionals
come with a dramatic increase in computational expense as we will see later on.

The Kohn-Sham equations are usually solved iteratively. One first constructs the Kohn-Sham
Hamiltonian with an initial guess of wave functions and density, solves the Kohn-Sham eigenvalue
problem obtaining new wave functions and density, inserts the new wave functions and density
into the Kohn-Sham Hamiltonian, and solves the equations again. This process is repeated until
self-consistency is achieved.

The orbitals, ψi(r), are usually expressed in a finite basis set (e.g. plane waves), such that the
differential form of Kohn-Sham equations could be rewritten into a linear algebraic form. In the
plane wave basis, the system is modeled in a simulation box (e.g. unit cell of crystal or sufficiently
large volume enclosing an isolated cluster) with periodic boundary conditions. At the Γ-point, the
wave function is represented as

ψi(r) =
1

N

∑
G

eiG·rψi(G) . (2)

The transformation between real space ψi(r) and reciprocal space ψi(G) is conveniently done
through 3D fast Fourier transformations (FFT). Efficient on-the-fly transformations are necessary
because some terms in Eq. (1) are evaluated more efficiently in reciprocal space (e.g. kinetic oper-
ator) or real space (e.g. Vxc).

The implementation of the plane wave DFT algorithm in Qbox is based on the hybrid MPI+OpenMP
parallelization model [13, 14, 15]. Processors are logically arranged as a 2D grid with occupied or-
bitals (bands) distributed across processors as shown in Fig. 2. The plane wave coefficients for
each band are distributed across processors within a column process group. This decomposition has
many advantages (e.g. column- and row-wise communication patterns) [13, 14, 15]. In particular,
3D FFTs only involve communication within columns of the process grid, whereas the accumulation
of partial charge density contributions only involves communication within rows of the process grid.
This approach avoids, as much as possible, the use of global communication involving all processors.
In particular, it allows many 3D FFTs to be performed simultaneously (one for each band) within
each column process group. This makes the hybrid-DFT calculation (involving massive 3D FFT
computations) highly scalable. However, one can also immediately note intrinsic strong-scaling
limits introduced (e.g. the number of columns should not exceed the number of occupied bands).
When a 1D decomposition is used for 3D FFTs (slab+pencil), the number of processes in a column
should not exceed the grid dimension along the z-axis. Therefore, an intrinsic hard scaling limit of
nproc ∼ Nband × Nz is to be expected. In implementations, however, it may not be beneficial to
run in this limit due to communication overheads from small message sizes relative to the amount
of computational work per processor.

Qbox uses BLAS, LAPACK and ScaLAPACK for dense linear algebra. For 3D FFTs, Qbox uses
its own parallel data layout and calls 1D and 2D transform functions via an FFTW interface (sup-
ported by FFTW, MKL, and ESSL, for example) or IBM’s ESSL library (available on IBM BG/Q,
for example). Both parallel dense linear algebra and 3D FFTs have communication overheads which
might potentially affect the strong scaling performance of applications, such as Qbox. Our opti-
mization work in this project largely focused on reducing or hiding these communication overheads,
thus improving performance in the strong-scaling limit of Qbox.
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Figure 2: Distribution of wave functions on a 2D processor grid of nprow × npcol. Nband is the
number of bands, and Npw is the number of plane waves. Different column groups own different
groups of wave functions (bands).

3.2 WEST – many-body perturbation theory based on GW approximation

While DFT is good for describing ground state properties of materials, the theory itself does not
provide a direct connection to excited states. It has been demonstrated in many materials that
the Kohn-Sham gap (using LDA and GGA functionals) is smaller than the experimental optical
gap (the energy needed to excite an electron from the top of the valence band to the bottom of
the conduction band) [16]. Therefore, to get an accurate description of excited state properties,
one needs higher level post-DFT theories. The many-body perturbation theory at the GW level
has been proven to be a very good theory for excited states calculations [17, 3]. WEST is a post-
DFT code based on many-body perturbation theory with computationally efficient algorithms and
implementations to access excited states in materials.

The GW theory is based on the quasiparticle concept and Green’s function methods [17]. In a
Coulomb system, the repulsion between electrons leads to a depletion of negative charge around a
given electron. The ensemble consisting of this electron and its surrounding positive screening charge
forms a quasiparticle. The quasiparticle energy is determined by the following equation,

ĥψ(r) = −1

2
∇2ψ(r) + vext(r)ψ(r) + vH(r)ψ(r) +

∫
Σ(r, r′, ε)ψ(r′) = εψ(r), (3)

where vH is the Hartree potential, Σ is the self-energy and a non-local operator that describes
exchange and correlation effects beyond the Hartree-Fock approximation or DFT [2]. ψ is the
quasiparticle wave function and ε, in general, is a complex quantity with its real part corresponding
to the quasiparticle energy and its imaginary part determining the quasiparticle lifetime.

Eq. (3) is very similar to the Kohn-Sham equation [see Eq. (1)] except that the exchange-correlation
functional is replaced by the self-energy Σ. Within the GW framework, the self energy is approx-
imated as a product of the Green’s function G and screened Coulomb interaction W (hence the
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name GW).

Σ(r, r′, ω) = i

∫ ∞
−∞

dω′

2π
G(r, r′, ω + ω′)W (r, r′, ω′) (4)

W is directly related to the density-density response of the material χ(q, ω). We here omit the
exact expressions for G and W , which are found in Ref. [18].

The WEST code is organized as a driver for DFT codes and the version 2.0.0 (focus of this work) is
currently coupled to the plane wave DFT Quantum Espresso code (version 5.4.0; http://www.quantum-
espresso.org/). Key features distinguishing WEST from other GW implementations include the
following [18]: (1) the use of projective dielectric eigenpotentials (PDEPs)[19, 20] as basis set to
represent the density-density response function which allows to avoid large matrix inversion opera-
tions, (2) the use of density functional perturbation theory [21] to compute PDEPs without explicit
summations over empty (virtual) states, and (3) the use of the Lanczos algorithm to compute the
frequency dependent G and W , thus eliminating the need for plasmon pole models. Together with
an efficient parallel implementation, these algorithms enable WEST to do large-scale GW calcula-
tions.

There are two major steps in a WEST calculation.

(1) wstat: iterative diagonalization of the static (zero frequency) density-density irreducible re-
sponse function χ0(q, 0). The resulting eigenvectors will be used as a basis for expanding
χ(q, ω) and W (q, ω).

(2) wfreq: full frequency GW calculation including computation of χ = χ0 + χ0vχ (v is the
Coulomb potential), and Σ = iGW , from which the quasiparticle energy spectrum is obtained.

In the following, we only discuss those algorithms in WEST that were the focus of our optimization
efforts. Interested readers can refer to Ref. [18] for a more complete description of the formalism
and implementations of wstat and wfreq.

In wstat, one computes the response of the system, change of charge density ∆ρi, due to external
perturbations ∆Vi within the linear response framework (see Fig. 3),

∆ρi = χ∆Vi , (5)

The Davidson algorithm is used to iteratively diagonalize the response function. Eq. (5) serves
as the matrix-vector multiplication rule, where the response function is never represented as a
Npw×Npw matrix. A low-rank decomposition of the response function (of size Npert×Npert) can be
achieved using the Npert most screened eigenvectors (with Npert � Npw). In our implementation,
the communication between nproc MPI processes is organized into a two dimensional grid: one
dimension of the grid distributes perturbations and the other distributes plane-wave coefficients
and FFT operations. This scheme exploits the embarrassing parallelism carried by Eq. 5 in the
perturbation index, and results in an inherit strong scaling limit of nproc = Npert ×Nz, where Nz

is the FFT grid size in the z direction[18].

We also note that in Eq. 5 one can express the total change of the density of Nocc electrons in terms
of the sum of Nocc single particle contributions, namely:

∆ρi(r) =
∑
σ

Nσ
occ∑

n=1

∫
BZ

dk

(2π)3

[
Ψi∗
nkσ(r)∆Ψi

nkσ(r) + c.c.
]
. (6)
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Figure 3: Schematic of wstat calculations. The response of the system to Npert perturbation is an
embarrassingly parallel problem.

The linear change of single-particle Kohn-Sham orbitals (∆Ψi
nkσ) is obtained by solving the Stern-

heimer equation [21, 22] for each occupied orbital, identified by band index n, k-point k and spin
polarization σ.

4 Code Development

4.1 Optimization of Qbox

In Qbox, the majority of runtime is spent in math libraries (e.g. ScaLAPACK and FFTW). There-
fore, application performance to a large degree depends on external libraries tuned to specific
architectures and effectively utilizing resources. Thus, the focus of our optimization efforts have
largely been directed at improving performance of the algorithms and addressing communication
overheads to improve the overall strong scaling efficiency of Qbox. One area of importance is ef-
ficient computation of eigenvalues and eigenvectors, for which the ScaLAPACK eigenvalue solver
was replaced with one from ELPA (Eigenvalue SoLvers for Petaflop-Applications) for performance
improvements in the range 5-10x depending on problem size and solver [23, 24]. A second area of
importance that we investigated was understanding the criteria necessary to setup optimal proces-
sor configurations for the simultaneous best performance of 3D FFTs and dense linear algebra [14].
Competing effects were observed for any single data layout, thus we swap data between two layouts
on-the-fly to reduce communication overheads in 3D FFTs and dense linear algrebra computation
improving substantially the strong scaling parallel efficiency of Qbox.

4.1.1 Replacing ScaLAPACK eigenvalue solver with ELPA

Solving the eigenvalue problem can be a crucial component of DFT depending on the physics of
the system being investigated (e.g. low band gaps and metallic systems) and methods employed
(e.g. wave function optimizer). For example, when using the Jacobi-Davidson (JD) algorithm to
update the wave function coefficients at each iteration, an eigenvalue problem needs to be solved for
matrices of size 2Nband × 2Nband. Therefore, choosing an efficient eigenvalue solver is crucial to the
overall performance of the code and enabling calculations on increasingly larger system sizes.

Qbox originally used subroutines from ScaLAPACK as the default eigenvalue solvers, syev (for
real matrices) and heev (for complex matrices). Many alternative algorithms have been proposed
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to replace the ScaLAPACK solvers and recently the ELPA library [23, 24] has been shown to
outperform ScaLAPACK at both small and large scales. We therefore implemented an interface
to ELPA in Qbox. In the following, we present our benchmark studies of several algorithms in
ScaLAPACK and ELPA for problem sizes relevant to large-scale calculations in Qbox.

4.1.1.1 Performance of ELPA in comparison with ScaLAPACK
We focused our study on square symmetric matrices with dimensions ranging from 512 × 512 to
4, 096 × 4, 096, which are most relevant to the production calculations in our Theta Early Science
project. Strong scaling analyses were performed by varying the number of MPI processes from 1 to
16, 384 for both Theta and Cetus (a 4–rack IBM BG/Q system). For the sake of brevity, results are
only shown for a 2, 048× 2, 048 matrix (similar behavior is observed for other matrix sizes).

There are several factors that potentially affect the performance of ELPA that need to be consid-
ered. Like ScaLAPACK, ELPA does rely on LAPACK and BLAS subroutines for serial portions of
algorithms, thus math libraries tuned for specific architectures are required for optimal performance.
We studied this dependence on Theta by linking ELPA to Intel MKL and Cray LIBSCI libraries.
Another factor to consider is the data layout, in particular, the blocking factor of the matrix. The
data layout for ELPA relies on the same block-cyclic distribution across a rectangular processor grid
as ScaLAPACK (thus making it straightforward to create an interface to ELPA), but the optimal
choice of blocking factor for the matrix needs to be investigated as the optimal blocking factor for
the two libraries may be different.
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Figure 4: Performance of ELPA compared with ScaLAPACK on Theta (KNL) and Cetus (BG/Q)
for 2, 048 × 2, 048 matrices. In all cases, square processor grids were used (i.e. nprow = npcol =√
nproc), and blocking factors were set as mb = m/nprow and nb = n/npcol. On both Theta and

Cetus, 1 MPI rank per core was used (64 and 16 per KNL and BG/Q node, respectively). elpa1
and elpa2 are ELPA stage 1 and 2 algorithms, respectively, with all eigenvalues and eigenvectors
computed. elpa1 half and elpa2 half are similar, but with only half of the eigenvalues and eigen-
vectors computed. Cray LIBSCI and IBM ESSL were used on Theta and Cetus, respectively, as
the underlying math library.
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Figs. 4 show the performance of ELPA on BG/Q and KNL, where on both platforms we observed
the following.

(1) The divide and conquer algorithm syevd performs better than syev, and similarly for heevd
compared to heev.

(2) The ELPA stage 2 algorithm (elpa2 ) performs better than ScaLAPACK solvers and is gener-
ally one order of magnitude faster than syev/heev.

(3) elpa2 performs better than elpa1 on smaller numbers of processes, whereas both perform
similarly as number of processes increases. This is due to elpa1 being sensitive to the choice
of the blocking factor. With an appropriately tuned blocking factor, elpa1 was observed to
perform better than elpa2 even at small processor counts, as discussed below.

(4) elpa2 was observed to have strong scaling properties similar to ScaLAPACK’s syev, syevd,
heev, and heevd. On both BG/Q and KNL resources, these algorithms scale well up to about
(m/64)× (m/64) processor grids for the matrix sizes examined. As the number of processors
is increased, the size of the local matrix block owned by a process decreases in size. The
scaling benchmarks on both Theta and Cetus indicate that the eigenvalue solvers scale well
down to 64× 64 local matrices before communication costs degrade performance.

(5) ELPA performs better on KNL compared to BG/Q if identical number of processors are used.
Factors contributing to improved performance on KNL include higher achievable flops (e.g.
dgemm) and larger memory bandwidth via MCDRAM.

(6) Fig. 5 shows that ELPA on Theta performs better when linked against Intel MKL compared
to Cray LIBSCI, although the differences between ELPA algorithms (elpa1 and elpa2 ) is
much smaller than that of ScaLAPACK algorithms (syev and heev). In both cases, the ELPA
algorithms are observed to outperform ScaLAPACK in most cases regardless of whether Intel
MKL or Cray LIBSCI is used.
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Figure 5: Performance of ELPA on Theta with different math libraries (Intel MKL vs Cray LIBSCI).
The size of the matrix is 2, 048 × 2, 048. In all the cases, nprow = npcol =

√
nproc, and blocking

factors are set as mb = m/nprow and nb = n/npcol.

(7) In previous studies, blocking factors were always defined as mb = m/nprow, nb = n/npcol,
but in general one can choose to use smaller blocking factors. Using a 2048 × 2048 matrix,
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we investigated the effect of blocking factor on performance with two process configurations
(nprow = npcol = 8 and nprow = npcol = 32) and varying the blocking factor from 1 to
n/npcol.
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Figure 6: Performance of ELPA compared with ScaLAPACK on Theta for different blocking factors.
The size of the matrix is 2, 048 × 2, 048. The blocking factors are varied from 1 to nb = n/npcol.
MKL is used as the underlying library.

As shown in Fig. 6, we observed that elpa1 is more sensitive to choice of blocking factor
compared to elpa2. The performance of elpa1 degrades severely if nb > 64, whereas it performs
slightly better than elpa2 for nb < 64. This is the predominant reason why elpa1 did not
perform well for smaller numbers of processors (Fig. 4) because nb = n/npcol > 64. If a
smaller blocking factor had instead been used, then elpa1 and elpa2 would perform similarly
and both would outperform syevd and heevd. Based on this analysis, we opted to have Qbox
select elpa2 if nb > 64 and elpa1 if nb < 64 (note that nb = Nband/npcol).

4.1.1.2 Performance improvement in Qbox simulations using ELPA
The system examined in this comparison was a supercell of silicon carbide (SiC)256 with 2,048
electrons, thus matrices of size 2, 048× 2, 048 are diagonalized. 64 KNL nodes on Theta were used
with 64 MPI ranks per node and ranks arranged in a 64×64 configuration (nrowmax=64), thus each
column group was contained within a single KNL node. A runtime performance improvement of
4.8x for diagonalization was observed by switching from syev to elpa, resulting in a 2x improvement
of the wave function update kernel. On Cetus with 256 BG/Q nodes, and 64×64 configuration, the
changing of syev to elpa results in an improvement of 7x for diagonalization and an improvement
of 2x for the wave function update kernel. Switching from syev to syevd results in an improvement
of 2x and 3x for diagonalization on Theta and Cetus, respectively.

4.1.2 Improving strong scaling by on-the-fly remap data

Fig. 7 shows a high-level runtime decomposition of a hybrid-DFT calculation in Qbox for silicon
carbide (SiC)256 with 2,048 electrons. The total runtime is mainly spent in the following three
kernels:
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Figure 7: Strong scaling study of Qbox (v 1.63.5) on Theta for the (SiC)256 with the PBE0 exchange-
correlation functional. Processes are arranged in a 2D nproc = nprow × npcol grid, where nprow
was fixed at 256 and npcol increased. Curves with circles show runtimes from unmodified code,
where the total time per iteration (red circles) effectively stops scaling after 16,384 MPI tasks.
After optimizing for the blocking factor of matrices, strong scaling performance of Qbox improves
considerably (red diamond) with largest speedup coming from the hpsi function.

(1) exc – exchange-correlation kernel, which includes the computation of the exchange energy,

Ex = −1

2

∑
ij

∫
ψ∗i (r

′)ψ∗j (r
′)

1

|r− r′|
ψi(r)ψj(r) = −1

2

∑
G,ij

|Pij(G)|2V (G) . (7)

where ψi’s are Kohn-Sham orbitals, Pij(G) is the Fourier transform of the pair density ρij(r) =
ψi(r)ψj(r), and V (G) is the Coulomb potential in reciprocal space. Since the wave functions
are stored in reciprocal space, one first transforms ψ(G) to ψ(r), computes the pair density in
real space, and then transforms the pair density to reciprocal space to compute the exchange
energy. The runtime is predominantly spent in 3D FFTs of ρij(r) to Pij(G), for which there
are N2

band pairs to evaluate. With the help of a subspace bisection method [25], the number
of pairs actually evaluated could be reduced to a fraction of N2

band. However, these 3D FFTs
are still a dominant contribution to the runtime. Nevertheless, this kernel scales efficiently up
to 131,072 cores as the 3D FFTs are computed independently and distributed across column
groups of processors [see the data distribution in Fig. 2].

(2) hpsi – applying the Hamiltonian to the wave function, including (a) kinetic energy operator;
(b) local potentials (transforming orbitals to real space, multiplying by potential, and trans-
form product back to reciprocal space); (c) nonlocal potentials (including exact exchange
correlation functional). In a hybrid-DFT calculation, step (c) is the most expensive part
involving matrix-matrix multiplications. Three types of matrix-matrix multiplication oper-
ations are involved: RT · R′, R · S and S · S′, where R and R′ are tall skinny matrices of
npw ×Nband; S and S′ are square matrices of Nband ×Nband, and Nband << npw.

(3) wf update: updating wave function coefficients. Several algorithms are currently implemented
in Qbox. The algorithm used in Fig. 7 is Preconditioned Steepest Descent (PSD), which
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primarily involves d(z)gemm and Gram-Schmidt orthogonalization. Other schemes, like JD
discussed earlier, involve solving eigenvalue problems (e.g. syev, heev, or elpa).

From Fig. 7, we observed that the hpsi and wf update kernels stopped scaling above 16,384 processors
(256 KNL nodes). The dramatic increase in runtime for hpsi was identified to be from a mismatch
of blocking factors used for square and tall-skinny matrices. The blocking factors of tall-skinny
matrices (R and R′) were set as mb = npw/nprow and nb = Nband/npcol (see Fig. 2). However, the
blocking factors for the smaller square matrices (S and S′) were set as mb = nb = 64. While no
noticeable performance difference is observed at smaller processor counts, this mismatch leads to an
increased communication cost in d(z)gemm at larger processor counts. After adjusting the blocking
factors to be mb = nb = Nband/npcol for all matrices, the runtime of hpsi reduced by about one order
of magnitude in the strong scaling limit nproc > 16, 384 (green diamonds in Fig. 7). Unfortunately,
the overall calculation still does not scale ideally above nproc ∼ 16, 384.

The performance bottleneck for ideal strong scaling was observed to come from communication
overheads in parallel dense linear algebra kernels (e.g. ScaLAPACK’s d(z)gemm, syrk, and potrf ).
When nproc is increased with nprow fixed, this increases npcol, such that bands are distributed
across more column groups and the exact exchange kernel continues to scale. However, this has
the undesired effect that the local matrix owned by a processor becomes increasingly more skinny
resulting in increased communication costs between column groups. The major issue here is that
the processors are logically arranged in a way that is optimal for the exact exchange calculation, but
not for matrix operations needed by other kernels. Instead of trying to find a single arrangement
of processors that is simultaneously optimal for all kernels, we chose instead to create separate
BLACS contexts that optimally map onto the needed matrix operations and redistribute data on-
the-fly between the two contexts as needed. We discuss two approaches explored for remapping the
data in the following sections: gather & scatter remap and transpose remap.

4.1.2.1 Gather & scatter remap

In the gather & scatter remap, a subgroup of processors are assigned for ScaLAPACK matrix
operations while all other calculations (e.g. exc) remain assigned to the original large processor grid.
In particular, we reduce nprow, npcol, or both in the original context to create the new context.
Data is then exchanged between small and original processor grids using a custom remap function
implemented in Qbox. In this case, the runtimes of ScaLAPACK functions in large scale runs are now
reduced back to their minimum values as the small grid was chosen based on benchmarking.

Fig. 8 schematically shows the two data layouts when using the gather & scatter remap. In this
example, a smaller context of (4× 4) processors is created from the original (4× 16) context. The
data transfer needed between these two contexts only involves communication amongst the four
processors in a row. Therefore, we are replacing the costly global communication in the original
context with 1) a cheap remap communication within rows plus 2) a cheaper global communication
in the smaller context (see Fig. 9).

The ScaLAPACK subroutine pdgemr2d was initially investigated for transferring data between the
two contexts. Unfortunately, the time spent remapping the data with pdgemr2d was similar to the
hpsi and wf update calculations. A detailed profiling study found that the communication pattern
in pdgemr2d was global (possibly because it is written to support generic use cases) and did not take
advantage of the linear mapping between contexts (e.g. re-scaling along single axis). Replacing the
global communication pattern with one that takes advantage of the special relation between contexts
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Figure 8: Schematic representation of data layouts before and after application of the gather &
scatter remap. The original 4 × 16 context (left) is remapped into a smaller 4 × 4 context (right)
by remapping data across rows. The circles represent processors with red colored circles depicting
those processors that are active in the respective context; gray circles represent idle processors. The
green rectangles represent local matrix blocks owned by specific processors. In the original context,
each processor owns a single green rectangle, whereas in the smaller context processors own 4
green rectangles from nearby processors in the same row. After the ScaLAPACK computation has
completed in the smaller context, the active processors scatter their data back to the idle processors
and the original context becomes active again.

was key to reducing the communication cost of the remap stage. As shown in Fig. 9, our custom
remap was 1000x more efficient than the generic ScaLAPACK pdgemr2d function. When the custom
remap is used in a production Qbox calculation, the overall scaling is further improved approaching
ideal performance in the strong scaling limit [see triangle curve in Fig. 9(b)]. In this particular case,
the runtime per SCF step is reduced to 30.5 seconds compared to 400.8 seconds in original code and
67.5 seconds after optimizing for blocking factors. This significant improvement in strong-scaling
performance makes ab initio molecular dynamics simulations using hybrid functionals for extended
time scales and/or larger systems more practical on large-scale computing resources.

4.1.2.2 Transpose remap
One drawback in the gather & scatter remap is that only a subset of processors are active for the
ScaLAPACK subroutines while the rest are idle. In other words, a fraction of computer time is
wasted periodically while the calculation runs. In the gather & scatter remap example above, we
reduced npcol and kept nprow unchanged. In fact, since a lot of matrices involved in d(z)gemm
operations are tall-skinny matrices, increasing nprow might help further to reduce ScaLAPACK’s
runtime. This is indeed the case for (SiC)256 as demonstrated in Fig. 10(a). It is clear that for a
fixed npcol, increasing nprow helps to reduce the ScaLAPACK runtime. Therefore, we alternatively
could have created a context with the same number of active processors as the original context but
with both a larger nprow and smaller npcol. This is the essential idea of transpose remap discussed
next.

The transpose remap is schematically shown in Fig. 11. In this example, we map the original 4× 4
grid into an 8× 2 grid. The processors are rearranged in a way such that data movement between
the two contexts is minimal. In particular, the 2D coordinates of a processor in the new context
(myrow′,mycol′) are related to coordinates in the original context (myrow,mycol) in the following
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Figure 9: Improvement of strong scaling in Qbox using the gather & scatter remap for (SiC)256
with the PBE0 exchange-correlation functional. (a) Remap times (pdgemr2d and custom) compared
with hpsi and wf update before and after optimization. (b) Summary of strong scaling performance
improvements of Qbox on Theta comparing original code (circles), optimization of blocking factors
(diamonds), and remap (triangles).

way,

myrow′ = myrow × g +mod(mycol, g), mycol′ = mycol/g , (8)

where g is a shrinking factor in the column dimension. The blocking factor is correspondingly
changed as follows,

mb′ = mb/g, nb′ = nb× g . (9)

The communication pattern is again local in the transpose remap with each process only commu-
nicating with g nearby processes within the same row (in the original context). In fact, this data
movement is essentially a series of transposes within non-overlapping subgroups of g processes. We
again expect that a custom implementation of the transpose remap communication will perform
better than the generic ScaLAPACK pdgemr2d.

However, the transpose remap involves an additional constraint. The data distribution in Fig. 11
can only be obtained if mod(mb, g) = 0 in Eq. (9). If this condition is not met, there will be
data movement between processes of different rows resulting in a more complicated communication
pattern. To circumvent this, in the initialization of the dimension of the wave function, we adjust m
such that mod(m,nprow) = 0 and mod(m/nprow, g) = 0. This is done in the code by transforming
the wave function to real space, adjusting the real space grid and interpolating to obtain values on
the new grid, and then transforming back to the reciprocal space.

The transpose remap will especially benefit those cases where the exact exchange kernel prefers
small nprow. In the case of (SiC)256, the FFT grid size 256×256×256, which could scale efficiently
up to 256 processes. However, due to the ratio of KNL computational/memory performance relative
to network bandwidth of the Aries interconnect on Theta, we observed that these relatively small
3D FFTs did not scale well beyond multiple KNL nodes. This is seen in Fig. 10 where exc is faster
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Figure 10: Runtime performance of different contexts in Qbox on Theta for the (SiC)256 system.
(a) total runtime of ScaLAPACK subroutines involved in single SCF iteration with different nprow
and npcol. (b) runtime of Qbox kernels for different nprow (nrowmax).
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Figure 11: Schematic demonstration of data layouts before and after application of the transpose
remap. The original 4 × 4 context (left) is remapped into a new 8 × 2 context (right) with all
processors active. The yellow circles represent the processors and numbers represent the processor
id. The rectangle blocks represent the local matrices owned by the processors.

if nprow = 64 compared to 256 for identical values of npcol (i.e. yellow triangles always faster than
yellow circles). However, the problem is that if nprow = 64 is used, then the ScaLAPACK runtime
becomes larger than the case of nprow = 256 [see Fig. 10(a)]. If we were to use the gather & scatter
remap, then there would not be too much of an improvement since nprow′ ≤ nprow. However,
using the transpose remap, we are able to increase nprow reducing ScaLAPACK’s runtime.

Finally, Table 1 shows the further improvement achieved by using transpose remap with nprow = 64.
As can be seen, using the transpose remap results in the lowest observed runtime of 19.2 seconds
per iteration on 512 KNL nodes on Theta. Using the MKL library for 3D FFTs, the runtime is
further reduced to 15.0 seconds per SCF iteration. For the case of nprow = 256, since 3D FFTs
operations are dominated by communication time, changing math libraries does not improve their
performance.
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Table 1: Performance improvement obtained by choosing consistent blocking factors (opt. b.f.) and
using remap methods (npcol′ = npcol/8): the time shown is the total runtime per SCF iteration in
seconds. Cray LIBSCI library was used in this benchmark.

nprow (Nnodes) original opt. b.f. gather & scatter transpose

256 (2048) 400.81 67.45 30.52 29.93
64 (512) 369.81 47.92 36.62 19.21

4.1.2.3 Suggestions on how to set nrowmax and remap parameters
Some guidance to setup contexts for large scale hybrid-DFT calculations in Qbox follows:

(1) determine nrowmax : this controls nprow in the original process grid. One could choose
nrowmax to be the maximum number of processes for optimal performance of 3D FFTs.
On BG/Q, a good choice is to set nrowmax = Nz where Nz is 3D FFT grid size along z
direction. On Theta, since relatively small 3D FFTs do not scale well beyond a single KNL
node (compute/memory vs. communication), a good choice is to set nrowmax = 64 (number
of cores per KNL node assuming 1 MPI rank per core).

(2) determine remap: once nrowmax and nprow are known, npcol = nproc/nprow. The blocking
factor in the column dimension is determined as nb = Nband/npcol. If nb > 16, it is generally
not necessary to remap data, however, if nb < 16, then one could set npcol′ = npcol× nb/16,
such that in the new context nb ≥ 16. One could then decide whether to use the gather &
scatter or transpose remap strategies based on mb′ = m/nprow′ (nprow′ = nproc/npcol′).
If the new blocking factor m/nprow′ is larger than 16, transpose remap may be beneficial,
otherwise one should just use gather & scatter remap.

By using these remap strategies, the strong scaling limit of the whole hybrid-DFT calculation is
nproc = Nz × Nband/2 (or nproc = 64Nband/2 as suggested for Theta). The factor 1/2 is due to
the fact that the subspace bisection algorithm will not reduce the number of nonzero overlap pairs
in the limit of one band per column group. For LDA or GGA calculations, it is challenging to
scale the overall calculation to nproc = Nz ×Nband/2 (or nproc = 64Nband/2 on Theta). Therefore,
we would not suggest to use remap in LDA and GGA. Instead, one could directly set the original
context to be optimal for ScaLAPACK computation as 3D FFTs are generally a small part of the
total runtime.

4.2 Optimization of WEST

This section summarizes all the optimization accomplished with the WEST codes during our Theta
ESP project. We start with single node benchmarks on different platforms, where the majority
of runtime is observed to be spent in LAPACK and 3D FFT libraries. Similar to Qbox, WEST
primarily relies on the highly performant external libraries to fully utilize the advanced features of an
architecture. Given this, we again focus on the parallelization of the code, in particular, using band
and task group parallelizations to extend the strong-scaling limit of WEST. I/O operations were
improved by adopting a single-reader-broadcast scheme and by implementing support for base64
encoding, which facilitates portability across different endian machines.
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Figure 12: Performance comparison between BG/Q and KNL linking wstat to different libraries
(FFTW3 and ESSL on BG/Q; LIBSCI, MKL, and FFTW3 on KNL). The system examined is a
CdSe nanoparticle with 884 electrons. The labels fftw3-avx512 and fftw3 correspond to the fftw-
3.3.6 library compiled with and without, respectively, AVX-512 for FFTs. On Theta system, the
label KNL-flat 0-MKL corresponds to running in flat memory mode (using DDR); otherwise, the
cache memory mode was used.

4.2.1 Performance of external libraries: single perturbation study

We initially focused on single-node performance of wstat. Fig. 12 shows the runtime for the cal-
culation of the response of one perturbation using different platforms (BG/Q and KNL) and FFT
libraries (ESSL, FFTW3, and MKL). The computation on Theta is performed on a single KNL
node with 64 cores, whereas the computation on BG/Q is performed on 4 BG/Q nodes with a total
of 64 cores. As shown in Fig. 12, the runtime of wstat is predominantly 3D FFTs and linear algebra
operations (GEMMs).

(a) FFT: 3D FFTs of wave functions and density. For BG/Q, ESSL is about 3x faster than
FFTW3. On KNL, MKL results in the best runtime, which is about 2.7x faster than LIBSCI.
We also observe that the performance of FFTW3 compiled with AVX-512 is comparable to
LIBSCI, and is slightly faster than FFTW3 without AVX-512.

(b) gemm: LAPACK subroutines for multiplication of dense matrices, namely D(Z)GEMM. The
performance on KNL depends on the choice of memory mode with allocation into MCDRAM
performing 2.1x faster than allocation into DDR memory (KNL-flat 0).

(c) other: MPI All reduce of distributed arrays (e.g. computing change of density) and remainder
of application.

Comparing the cases with best vendor-provided libraries (e.g. ESSL on BG/Q, and MKL on KNL),
a factor of 3.7x speedup is observed going from BG/Q to KNL. On both platforms 3D FFTs and
D(Z)GEMMs take more than 80% of the total runtime. As one would expect the vendor supplied
math libraries already effectively utilize the hardware features of KNL. As we have mentioned,
MCDRAM plays important role in the performance as is seen from the comparison between cache
memory mode and flat memory mode (using DDR). The original runtime in cache mode was ob-
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served to be 3x faster than that in flat mode (DDR). MCDRAM especially benefits performance of
memory-bandwidth limited kernels, such as 3D FFT. We note that the KNL in the cache memory
mode can access 192 GB DDR memory while retaining the 16 GB MCDRAM as a last-level cache.
This KNL feature enables the calculation of the smallest independent unit of work (single pertur-
bation in this case) of a large-scale WEST calculation to be tractable within a single KNL node.
This is in contrast to the BG/Q system where the memory is limited to 16 GB per node and one
may be forced to spread the calculation across multiple nodes.

4.2.2 I/O optimization
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Figure 13: Time spent reading the initial wave function initially observed to increase with number
of KNL nodes on Theta with Lustre filesystem (a) becoming a significant fraction of runtime. The
same effect was observed to a lesser extent on BG/Q with GPFS filesystem (b). Time spent in
I/O reduced to negligible fraction of runtime on 1-1024 nodes by having master process read and
distribute wave function. The number of perturbations is twice of the number of nodes.

As mentioned in Sec. 3.2, the implementation of the Davidson diagonalization algorithm is embar-
rassingly parallel in the perturbation index, however the near-ideal scaling can be compromised by
I/O operations. In order to assess the scaling of I/O operations in wstat, we performed a weak
scaling benchmark study on Theta by computing the response of the system to a constant number
of perturbations per KNL node, therefore by increasing the number of perturbations and processors
at the same time (Npert = 2Nnode). The benchmark results on Theta (featuring a Lustre filesys-
tem) showed that I/O operations are responsible for the weak-scaling degradation [see Fig. 13(a)]
and, to a lesser extent, a similar performance degradation is observed on Mira (featuring a GPFS
filesystem) [see Fig. 13(b)].

After carefully profiling the code (see CPU trace profiles in Fig. 14), we determined that the I/O
performance degradation can be prevented by restructuring the initial I/O of wstat. As a matter
of fact, in order to compute the response to a given perturbation, wstat needs to load the DFT
electronic structure (energies and wavefunctions), however such information does not depend on
the perturbation and can therefore be read from the filesystem by single replica and then broadcast
to all other replicas.

With the new single-reader-broadcast I/O scheme, the scaling of the initial I/O phase substantially
improved resulting in a cost that remains negligible on both Theta [Fig. 14(d)] and BG/Q [Fig. 14(b)]
up to 1024 nodes.
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Figure 14: Restructuring the I/O distribution scheme in wstat : (a) original I/O scheme where all
replicas read checkpoint files simultaneously; (b) CPU trace for the original I/O scheme where many
replicas (4 in this case) observed to interfere with each other degrading performance; (c) new I/O
scheme where a single replica reads checkpoint file and broadcasts data to all other replicas; (d)
CPU trace for new I/O scheme.

The profiling of I/O operations on Theta has also revealed a performance bottleneck of the library
used by WEST to write XML files, the IOTK library (distributed within Quantum Espresso 5.4.0).
Fig. 15 shows the read and write performance of IOTK for a single complex array of varying size
with the IBM XL compiler on BG/Q and two separate KNL installations at Argonne using the Intel
compiler (Theta at ALCF and nodes at JLSE). Performance of the IOTK library is compared with
direct READ and WRITE functions provided by FORTRAN. As shown in the figures, direct READ
and WRITE is faster than IOTK in all cases with the largest performance difference observed on
Theta (Lustre) where direct READ is about three orders of magnitude faster than IOTK.

The following line in the IOTK library was found responsible for the I/O performance bottle-
neck:

READ( unit , i o s t a t=i o s t a t ) ( dat ( j ) , j = 1 , ubound ( dat , 1 ) )

which loops over elements of the array. In the direct READ/WRITE implementation, the previous
statement was simply replaced with the following line (to assist the compilers).

READ( unit , i o s t a t=i o s t a t ) dat

In all cases, this relatively straightforward change improves the I/O performance on all three systems
(Cetus, JLSE, and Theta) for reading and writing regular arrays of data in checkpoint files. These
improvements with direct READ and WRITE also significantly improved I/O performance in other
portions of WEST, including I/O that frequently occurs during calculations in wfreq.

4.2.3 Parallelization

In order to exploit the embarrassing parallelism of Eq. (5), at the basis of the linear response
calculation, the WEST 2.0.0 implementation features two layers of parallelization: over (1) plane
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Figure 15: Benchmark of I/O performance for different size of data on Cetus (BG/Q), Theta (KNL),
and JLSE (KNL). The subroutines iotk read() and iotk write() read and write, respectively, using
the default iotk library, whereas the subroutines west read() and west write() use direct READ and
WRITE functions provided by FORTRAN.

waves and (2) external perturbations. These algorithm decisions set the strong-scaling limit of
wstat to Npert × Nz processes, where Nz is the number of 2D FFT slices along the z-axis and
Npert is the number of perturbations. This scaling limit is demonstrated in Fig. 16 for a silicon
nanocrystal (Si35H36) calculation, in which performance scales efficiently only up to 256 KNL nodes
(64 cores per node) for 256 perturbations with one perburbation per node [see yellow circle curve
on Fig. 16].

We have added a third layer of parallelization with the purpose of distributing the sum over single
particle states necessary to compute the total charge density. We note indeed that Eq. 6 involves the
calculation of independent single-particle responses. With this additional layer of parallelism, the
calculation of the single-particle response is assigned to Nband band-groups, and the total variation
of the density ∆ρi is obtained with a MPI Allreduce operation. The latter operation has a negligible
cost with respect to the calculation of single particle responses, and overall band parallelism results in
a significant improvement of strong scaling performance (see Fig. 16). Band parallelization extends
the strong-scaling limit of wstat algorithm up to Npert×Nband×Nz cores. This improvement enables
wstat to readily utilize the full Theta machine and paves the way to full Aurora (next generation
ALCF leadership supercomputer) calculations for systems with 2–5 thousand electrons.

One limitation of the current band parallelization implementation is that every band group owns an
entire copy of all data including wave functions and non-local pseudopotentials. In this case, as the
system size increases to unprecedented sizes for GW calculations, this data will eventually no longer
fit within the memory of a single KNL node (192 GB per node on Theta) and it will be necessary
to spread individual band groups across multiple KNL nodes, incurring performance degradation
caused by FFT inter-node communication. To address these cases, we have explored the possibility
to distribute independent FFT operations on a smaller number of cores. This protocol is termed
task-group parallelization and is used in Quantum Espresso to extend the scalability of 3D FFT
beyond Nz processes. In WEST task-group parallelization can be used to redistribute different
3D FFT operations over a smaller number of processors so that to avoid expensive inter-node
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Figure 16: Strong-scaling performance of wstat without (yellow) and with (green) band paralleliza-
tion (BP) on Theta. The system studied is a silicon nanoparticle Si35H36 with 176 electrons and
256 perturbations.

communication operations. In other words, the whole band group is partitioned into smaller task
groups, each of which fits within a single node, thus enabling 3D FFTs to be computed within a
single KNL node taking advantage of shared memory MPI communication for transposes. However,
similar to the remap strategies implemented in Qbox, this is beneficial only if the communication
overhead due to the data redistribution step is faster than the original MPI Alltoall.

Fig. 17 shows the performance of 3D FFT operations performed on 16 wave functions with FFT
grid sizes of 2563 and 5123. Without using task groups, the MPI Alltoall (solid red curves) com-
munication operations involved by 3D FFT was identified as the largest fraction of runtime. After
redistributing wave functions using task groups, the MPI Alltoall time is significantly reduced in
multiple-node cases; however, the overhead due to redistributing data via MPI Alltoallv (purple
curves in Fig. 17(a) and (b)) is slightly cheaper than original MPI Alltoall call. This is primarily
due to two reasons: (1) the amount of data transferred per wave function in MPI Alltoallv is smaller
than the original MPI Alltoall and (2) data for several wave functions (equal to the number of task
groups) are distributed together, whereas in the original case each MPI Alltoall is completed for
single wave functions leading to increased latency effects.

By differently striding MPI ranks in task groups, we have tested whether it is beneficial to pack
within the same node all processes that belong to the same task-group. This rearrangement does
not have a significant effect on the overall runtime, although individual stages are affected [see
Fig. 17 (c) and (d)].

Table 2 shows runtimes for full wstat calculations with a relatively large nanoparticle consisting
of 301 atoms and 2816 electrons. The 3D FFT grid for this calculation is 480 × 480 × 480 and 8
KNL nodes were used with one MPI rank per core. With the use of task groups, the total 3D FFT
runtime is improved by ∼40%, resulting in an overall improvement of the total runtime by 20%.

Finally, we have identified in wfreq a region of the code which could be better parallelized. The
calculation of the macroscopic dielectric constant involves the calculation of 3Nocc independent
Sternheimer equations. Using ideas similar to those discussed in earlier sections, the independent
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(c) N = 256, no rearrangment
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Figure 17: Performance of task group parallelism in wstat. The reported runtime is for the forward
and backward 3D FFT transformation of 16 wave functions with FFT grid sizes of 2563 and 5123.
The solid curves are without task groups and dashed curves are with ntask group = num node =
nproc/64. In (a) and (b), the processors in band groups are arranged such that all the processors in
a task group will be within the same node; whereas in (c) and (d) the original processor arrangement
is retained.

equations were distributed across the parallelism layer that also distributes the perturbations. This
leads to a speed-up for this part of the calculation proportional to the size of the MPI group that
distributes perturbations, which theoretically is ≤ Npert. As the solution of these Sternheimer
equations is needed by all perturbations in order to proceed further, an MPI Allreduce operation
was introduced, adding a negligible cost to the overall computation.

5 Portability

In general, the initial porting effort of Qbox and WEST to the Intel KNL architecture on Theta was
straightforward as both codes routinely run on Intel Xeons and typically large fractions of runtime
are spent in external math libraries to compute 3D FFTs and dense linear algebra (e.g. FFTW,
ESSL, MKL, ScaLAPACK, and ELPA). Initially changing from BG/Q to KNL primarily involved
setting appropriate compiler flags and linking appropriate vendor-provided math libraries. The
AVX-512 vectorization enabled by KNL was principally taken advantage of through external math
libraries and the Intel compiler. For problem sizes with sufficiently small memory footprints (< 16
GB per node), the MCDRAM was utilized in the flat-quadrant memory-cluster mode after setting
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Table 2: Performance comparison using task groups in wstat with 8 KNL nodes on Theta.
kernel without task group 8 task groups (rearranged) 8 task groups (not rearranged)

Total WSTAT 1h58m 1h35m 1h41m
3D FFT 3729.23s 2294.99s 2378.65s

MPI AlltoAll 2500.48s 93.25s 1154.16s
Data movement – 996.60s 45.34s

“numa -m 1”. For larger problem sizes, the MCDRAM was utilized via the cache-quadrant memory-
cluster mode. Additional libraries, such as xerces-c and ELPA, were straightforward to build on
Theta given the similarity of the Cray programming environment on Theta to other computational
resources.

A major focus of our optimization effort for Theta was that of reducing communication overheads
in both Qbox and WEST, in part due to the increased computational intensity and memory band-
width relative to network bandwidth compared to the relatively balanced IBM BG/Q (e.g. Mira at
ALCF). All of the optimized algorithms implemented during this project are portable to other ar-
chitectures as evidenced by improved performance also observed in large-scale calculations on Mira.
However, due to differences in technical specifications across different computational resources (e.g.
interconnect), we expect some minimal benchmarking to be necessary to setup optimal configu-
rations for both codes to efficiently use those resources. For example, on the BG/Q systems, 3D
FFT calculations in Qbox and WEST scale ideally to number of cores equal to the grid size along
the z-axis (i.e. one slab per core). On Theta, however, degraded scaling was observed for similar
3D FFT calculations across multiple KNL nodes due to the increased ratio of memory to network
bandwidth (albeit with reduced runtimes compared to BG/Q). With benchmarking and appropri-
ately selecting configuration settings (e.g., nprow in Qbox and size of band/task groups in WEST),
improved performance can be obtained.

Additionally, to enable workflows to utilize both Mira and Theta at ALCF, Base64 encoding/decod-
ing was implemented for checkpoint files in WEST. This makes the input, output, and intermediate
binary files transferable between different endian systems (e.g. Mira and Theta), making it possible
to utilize both resources, as needed, to run large-scale science campaigns.

6 Conclusions

In summary, we have optimized two open-source electronic structure codes, WEST and Qbox,
on Theta. As a result of this Theta ESP project, the weak- and strong-scaling performance was
significantly improved for the two codes on Theta where the ratio of compute/memory capabilities
relative to network are larger than recent architectures. In addition, many of the optimizations
implemented here have also improved performance on relatively balanced architectures (e.g. IBM
BG/Q), where both codes already had good performance. Thus, utilization of large fractions of
available leadership computing resources combined with improved time-to-solutions enabled by this
project are enabling science-critical calculations that were not previously possible.

For Qbox, we implemented data remap methods to efficiently redistribute data on-the-fly between
ScaLAPACK contexts that are chosen to be optimal for respective operations on tall-skinny and
small-symmetric matrices. These algorithms enable efficient calculation for separate phases of Qbox,
where it is challenging to use a single context to solve rather different computational tasks. The
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performance improvements from these optimizations have enabled large-scale exact exchange cal-
culations with good parallel efficiency in the limit of one band per column group. This capability
significantly reduces the time-to-solution for hybrid-DFT calculations and enabled efficient utiliza-
tion of 100% of Theta, for example, thus enabling ab initio molecular dynamics simulations for
systems with thousands of electrons.

For WEST, the initial I/O phase was restructured to use a single-reader-broadcast algorithm, which
significantly improved weak scaling performance on the full Theta resource. Additional levels of
parallelism were implemented (band- and task-based parallelization) that exposed finer-grain work
units that extended the strong scaling limits of the implemented algorithms. These optimizations
widen the scope of possible excited state calculations that are able to efficiently utilize large fractions
of today’s leadership computing resources today (e.g. 100% Theta) and facilitates design of scientific
campaigns to potentially utilize large fractions of upcoming large-scale resources (e.g. an exascale
resource).

As the majority of the optimization effort in this project focused on addressing communication
overheads, it is fully expected that these portable improvements will also help to improve perfor-
mance of smaller-scale calculations. Additionally, with the current trend of computational intensity
increasing faster than the rate at which data can be moved between nodes, addressing the commu-
nication overheads now will place both codes in a better position to utilize larger-scale resources of
the near future. Some of the guiding principles of our portable optimization efforts here to reduce
internode communication costs and improve overall scalability of both applications are expected
to be generally applicable: (1) appropriately distribute independent work units (independent in
the sense of minimal inter-work communication); (2) reducing or hiding communication overheads
by optimizing communication patterns, possibly through rearranging data layouts on-the-fly for
different phases of a calculation.
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